Compo-SiL®

Applications of

Flexible Hybrid Electronics (FHE)

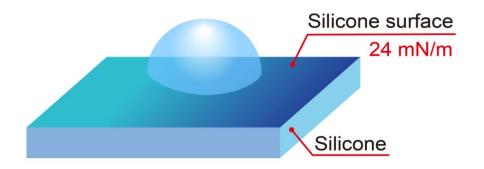
Contents

- O1 About *Compo-SiL*®
- O2 Substrate for Flexible Hybrid Electronics
- O3 Sensor for Flexible Hybrid Electronics
- 04 Other Applications

General Silicones has developed a better solution for ecofriendly, sustainable, highly durable, printable, laminable and flexible *Compo-SiL*[®] polymer composite substrate that comes with unlimited possibilities as an emerging material.

Adhesion Problems of Silicone Rubber

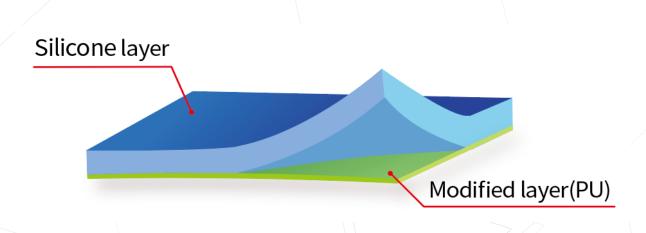
Silicone is one of the bio-friendly and sustainable materials. Despite that, adhesion problems of cured silicone rubber hampered mass production. The **low surface energy (LSE)** of 24 mN/m of cured silicone rubber makes it difficult to use for good adhesion.


Solid Surface	Critical Surface Tension (mN/m)
Polytetrafluoroethylene (PTFE)	18.5
Silicone	24
Poly (vinylidene fluoride)	25
Polyethylene (PE)	31
Polypropylene (PP)	31
Polystyrene	33
Poly (vinly chloride)	39
Nylon-6,6	43
Poly (ethylene terephthalate) (PET;Polyester)	43
Aluminum	~500
Glass	~1000
Iron Oxide	~1350

Surface energies of common substances

Ref: Adhesion and Adhesives: Science and Technology; Anthony J. Kinloch, New York: Chapman and Hall (1987)

Lower Surface Energy


Poor Wetting

Core Value of Compo-SiL

With the patented newly silicone surface modified techniques , $Compo-SiL^{^{\otimes}}$ allows the silicone materials to widely applied to various daily life products.

Property

of Silicone Layer

Highly elastic

Waterproof

Glossy surface

Highly transparent

Thermally conductive

Highly biocompatible

Weather resistance

Hydrolysis resistance

Electrically insulating /conductive

UV resistance

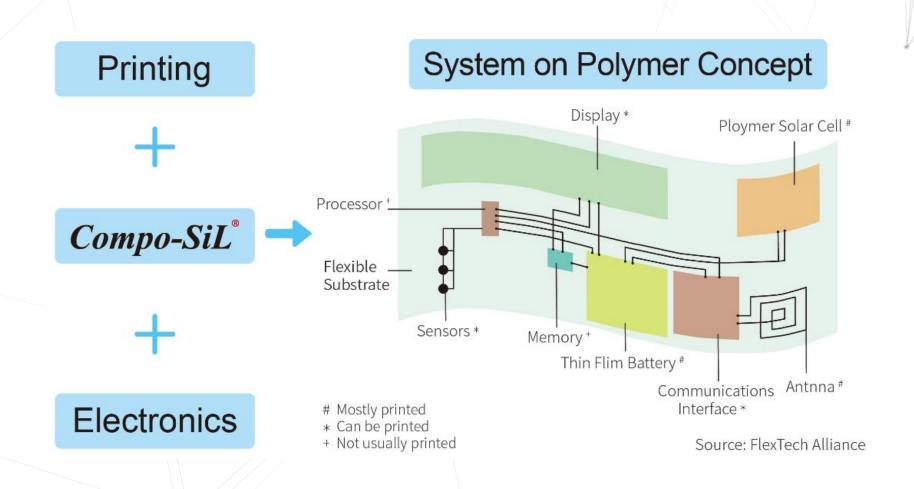
Property

of Modified Layer

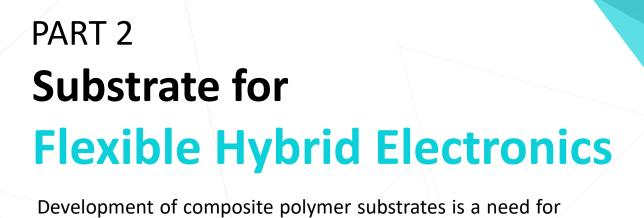
Printable

Laminable

PU foam


High temperature resistance

Adherable


Overview of Printed Flexible Hybrid Electronic(FHE)

Motivation for Compo-SiL®

- Roll to roll
- Printable
- Laminable
- Flexible/Stretchable
- Wearable (Textile & Skin)
- High Temperature Resistant

revolutionary Compo-SiL® series product has opened up unlimited possibilities acting as an emerging material and

substrate for Flexible Hybrid Electronics.

next generation

flexible hybrid electronics. The

Substrate portfolio in FHE

N1051A1T10

PU Functionalized Layer (1~ 2 um)

Silicone Layer (100 um)

PET Liner (75 um, releasable)

L1050A1T10

PU Functionalized Layer (1~ 2 um)

Silicone Layer (100 um)

Paper Liner (releasable)

A1020A1T20

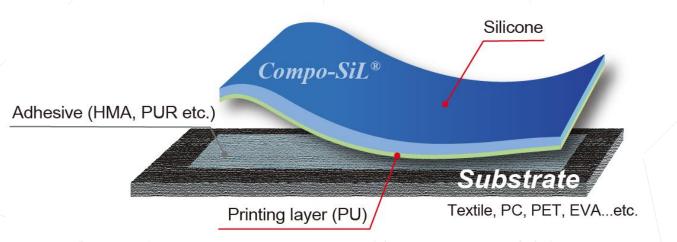
PU Functionalized Layer (1~ 2 um)

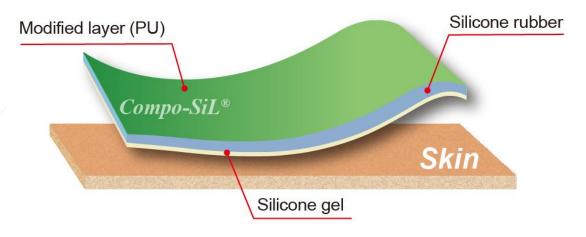
Silicone Layer (200 um)

G1051A1T15

PU Functionalized Layer (1~ 2 um)

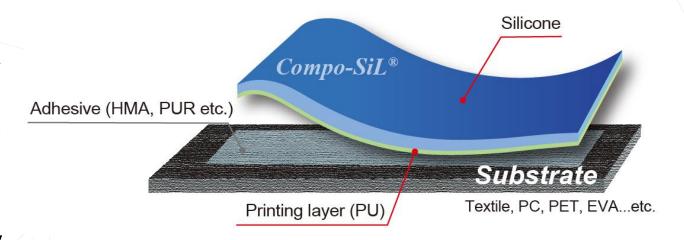
Silicone Layer (100 um)


Adhesive Layer Silicone Gel Coating


PET Liner (75 um, releasable)

Structure

Smart Textile Applications


Electronic Skin applications

Smart Textile Substrate


Compo-SiL® is an emerging eco-friendly substrate provides a solution of textile binding ability using HMA, printability and laminability at a same time. Having silicone along with a printable and laminable modified layer produced in a large scale roll to roll process opens up the scope of designer clothing and fashion technology.

Electronic Skin Substrate

Compo-SiL® Skin is bi-layer thin film structure that can be stuck conformally onto the surface of the skin by soft contact with great adhesion force, having a layer of medical grade reusable silicone gel creating an interface for hybrid electronic devices with seamless skin integration. It is stretchable enough to accommodate strains during natural body motion.

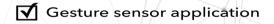
to artificial intelligence. They are basically flexible capacitors or resistors whose value changes due to deformation in the sensor

structure (bending or stretching or pressure).

Stretch Sensor (Capacitive / Resistive)

Resistive

-Application: Bio-medical, Robotics


-Properties: Stretchable, Bio-compatible,

Can be attached to textile, Resilient

Capacitive

- Application: Bio-medical, Robotics

Properties : Stretchable, Bio-compatible,
 Resilient

Pressure Sensor Resistive

Application:

- Medical
- Insole sensing
- Intra body pressure measurements

Properties:

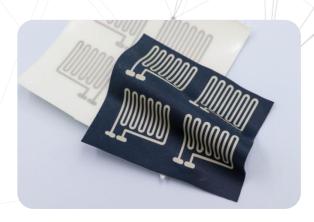
-Flexible

VIDEC

https://www.youtube.com/watch?v=YFbJawiPGgM

Applications

NFC Skin


RFID Circuit

Encapsulation for Circuits

LED band

Flexible Heater

Electroluminescent (EL)

Silicone Encapsulation for Circuits

Encapsulate

Application:

Wearable Electronics

- -Wearable to textile
- -UV resistant
- -Water repellent
- -Laminable
- -Washable

NFC Skin

Printed Circuit on *Compo-SiL*® Skin Substrate

Application:

- E-skin
- -loT

- -Bio-compatible
- -Printable
- -Washable
- -Reusable

Applications

NFC skin patch printed on biocompatible silicone

IoT Applications

- 1. A person's identity at entrance gate
- 2. Data transfer between devices

Fitness Monitoring

- 1. Heart rate measurement.
- 2. Alternative to fitness bands

Medical

- 1. Diagnostics and monitoring patches.
- 2.Record Medical
 Information to Improve
 Treatment Services.

Payment

1.Without plastic ID cards, credit cards or a mobile phone

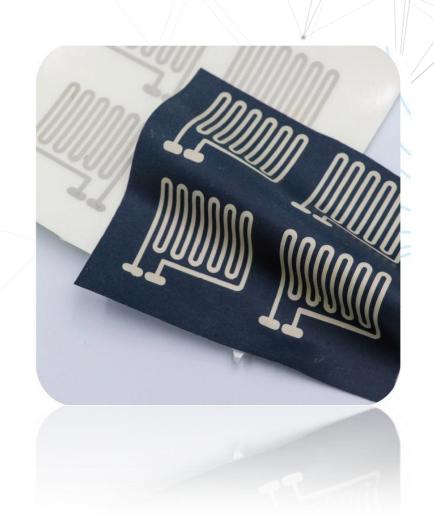
RFID Circuit

Printed Circuit on *Compo-SiL*® Substrate

Application:

Wearable Electronics

- -Flexible
- -Helps in Product Tracking Skin friendly


Flexible Heater

Printed Circuit on *Compo-SiL*[®] Substrate

Application:

Wearable Electronics

- -Durable
- -Skin friendly
- -Moisture and chemical resistant
- -Easily attachable to textile

Applications

Wearable printed heater based on Compo-SiL®

Food Service

Automotive Seat Heating

Apparel

Healthcare

Flexible Conductive Substrate

PEDOT:PSS Coating

Application:

Flexible Electrode

- -Low Sheet Resistance
- -Flexible and Bendable Skin friendly

Electroluminescent (EL) Device

Compo-SiL® Substrate

Application:

- Smart window
- -Athletics
- -Decoration

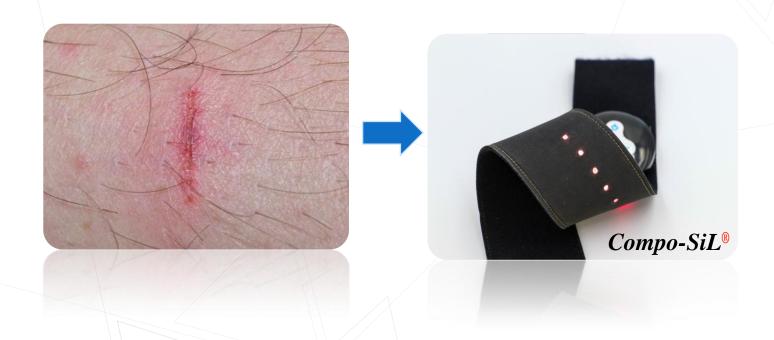
- -Flexible
- -Bendable

LED band

Compo-SiL® Substrate

Application:

-Diabetic wound healing


- -Waterproof
- -Thermally / electrically conductive
- -Highly biocompatible
- -Faster healing rates
- -Skin friendly Bendable

Applications

Compo-SiL[®] based LED band for healing wounds

- Faster healing rates in comparison to standard methods.
- Diabetic wound treatments with 635 nm wavelength (red) light.
- Several wavelengths of light have also been used for different types of wounds.

Production Line

Certifications

REACH 205

RoHS 2011/65/EU

HALOGEN

Patent

TW107118941

Taiwan Patent

Material ConneXion
Seal of Excellent Material

Q&A

Thank you for listening...

Website

LinkedIn

Facebook

YouTube

